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1  |  INTRODUC TION

Population geneticists often use summary statistics to describe pat-
terns of genetic variation and to estimate population genetic param-
eters such as effective population size or mutation rate (Gillespie, 
2004; Hartl et al., 1997). The calculation of summary statistics is 
thus often the first step in a population genetic analysis, be it an ex-
ploratory study, a test of an evolutionary hypothesis, or the training 

of a machine-learning model (Flagel et al., 2019; Hahn, 2019; Hartl 
et al., 1997). As such, accurate and unbiased algorithms for com-
puting summary statistics are critical to the practice of population 
genetics.

Many summary statistics are based on the comparison of DNA se-
quences. Two important summary statistics in this class are π, the aver-
age number of nucleotide differences between genotypes drawn from 
the same population (Nei & Li, 1979); and dXY, the average number of 
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Abstract
Population genetic analyses often use summary statistics to describe patterns of 
genetic variation and provide insight into evolutionary processes. Among the most 
fundamental of these summary statistics are π and dXY, which are used to describe 
genetic diversity within and between populations, respectively. Here, we address a 
widespread issue in π and dXY calculation: systematic bias generated by missing data 
of various types. Many popular methods for calculating π and dXY operate on data 
encoded in the variant call format (VCF), which condenses genetic data by omitting 
invariant sites. When calculating π and dXY using a VCF, it is often implicitly assumed 
that missing genotypes (including those at sites not represented in the VCF) are ho-
mozygous for the reference allele. Here, we show how this assumption can result in 
substantial downward bias in estimates of π and dXY that is directly proportional to the 
amount of missing data. We discuss the pervasive nature and importance of this prob-
lem in population genetics, and introduce a user-friendly UNIX command line utility, 
pixy, that solves this problem via an algorithm that generates unbiased estimates of π 
and dXY in the face of missing data. We compare pixy to existing methods using both 
simulated and empirical data, and show that pixy alone produces unbiased estimates 
of π and dXY regardless of the form or amount of missing data. In summary, our soft-
ware solves a long-standing problem in applied population genetics and highlights the 
importance of properly accounting for missing data in population genetic analyses.
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nucleotide differences between genotypes drawn from two different 
populations (Nei & Li, 1979). These two summary statistics underlie a 
large variety of descriptive and inferential procedures in population 
genetics. For example, π is often used as an estimator of the central 
population genetic parameter θ (and is thus sometimes styled as θπ). 
Similarly, dXY is a key statistic for exploring patterns of divergence be-
tween populations, particularly in the context of divergence with gene 
flow (Burri, 2017; Cruickshank & Hahn, 2014; Noor & Bennett, 2009).

1.1  |  Calculation of π and dXY

For a single biallelic locus, π is usually calculated using one of three 
expressions shown in Equation (1), all of which are exactly equivalent 
(Gillespie, 2004; Hahn, 2019; Nei & Li, 1979):

where kij corresponds to the count of allelic differences between 

the ith and jth haploid genotypes, n is the number of samples, 
and c0 and c1 are the respective counts of the two alleles at the 
locus. Note that the last expression is simply the sample-size cor-
rected expected heterozygosity (i.e., the “2pq” term in the Hardy-
Weinberg equation).

dXY is usually calculated using an all pairwise comparisons 
method (similar to the first expression in Equation 1), with the only 
difference being that comparisons are only made between geno-
types from different populations (Wakeley, 2016).

where nx and ny correspond to the number of individuals in popula-
tions X and Y, and kij corresponds to the count of allelic differences 
between the ith (from population X) and jth (from population Y) hap-
loid genotypes. There are also methods that use allele frequencies to 
approximate the result of Equation (2) (e.g., Smith & Kronforst, 2013), 
but note that these ignore differences in sample size among sites.

Often, π and dXY are computed for multilocus genomic regions or 
in sliding windows. In order to standardize these statistics between 
sequences of different lengths, it is common to convert them to per-
site estimates by dividing their raw value (computed for the whole 
sequence) by the total number of base pairs in the window (Hahn, 
2019; Hartl et al., 1997). However, two types of missing data can com-
plicate this procedure (Figure 1). First, when genotype information at 
a site is missing in all samples, the sequence length must be adjusted 
accordingly downward. Second, when genotype information at a site 
is missing in some samples, the denominator of the raw value of π and 
dXY (n in Equations 1 and 2) is variable across sites—a fact which must 
be accounted for in order to avoid the introduction of statistical bias in 
the final per site estimates (Nei & Roychoudhury, 1974).

Many population genetics texts introduce the calculation of π and 
dXY using full sequence data (as seen in Figure 1a). When DNA data 
are represented in this way, the distinction between missing, vari-
ant (polymorphic), and invariant (monomorphic) sites is obvious and 
straightforward. However, modern population genomic data is rarely 
encoded in this way. In fact, one of the most common formats for en-
coding genomic data, the variant call format (VCF), typically includes 
only sites that are genotyped as variant and does not usually explicitly 
distinguish invariant (but genotyped in the samples) sites from sites 
that are truly missing (Danecek et al., 2011). The data summarized by 
VCFs can include both categories of missing data described above: 
sites that are entirely missing and genotypes that are missing within a 
site. The strategy of only reporting variant sites means that genotypes 
missing within a variant site are indicated, but sites that are entirely 
missing are omitted from the VCF and are thus indistinguishable from 
sites that were genotyped as invariant. This feature is usually inten-
tional, as including information on millions of invariant sites massively 
increases file size and is superfluous for many analyses.

Unfortunately, information on both invariant and missing data is 
not superfluous for the calculation of π and dXY, and the absence of 
this information precludes the unbiased calculation of both statistics 
(Figure 1). This fact may be surprising to the reader, as many popu-
lation genetics software tools provide methods of calculating π (and 
more rarely dXY) from variants-only VCFs. How then, do these tools 
distinguish missing from invariant sites, as is necessary for the unbi-
ased calculation of per-site π and dXY? The answer to this question, 
as will be explored in depth here, is that the vast majority of existing 
tools make the simplifying assumption that missing sites are present 
but invariant (Case 1 in Figure 1). This assumption leads to down-
wardly biased estimates of π and dXY in the presence of missing data. 
This approach is problematic for a variety of reasons: along with the 
general underestimation of π and dXY it also creates a correlation be-
tween π/dXY and “missingness”, which can itself covary with various 
features of the genome, e.g., TEs or structural variants (Carmena & 
González, 1995; Kent et al., 2017).

The problematic nature of calculating π and dXY in the presence 
of missing data is well known to practitioners of population genet-
ics and is often overcome using a variety of ad hoc methods. One 
common approach involves the creation of a VCF containing both 
invariant and variant sites (sometimes called an “all sites” or “invari-
ant sites” VCF), from which information on truly missing sites can 
then be inferred (Burri, 2017; Irwin et al., 2018; Korunes et al., 2019; 
Samuk et al., 2017). However, this approach has not been formalized 
as a general-purpose tool.

Here, we introduce pixy, a user-friendly command line utility for 
calculating π and dXY from VCFs with invariant sites that correctly ac-
counts for missing data. We compare the accuracy of pixy's estimates 
of π and dXY to those of existing methods using both simulated and 
empirical data. We show that pixy alone produces unbiased estimates 
of both statistics under a wide range of missing data conditions. More 
generally, we discuss the pervasive nature of missing data in popu-
lation genetics, and use pixy to demonstrate the importance of ac-
counting for it in the context of the calculation of π and dXY.
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2  |  NE W APPROACHES

Pixy is a command-line tool, written in python 3 and available on 
github and via conda-forge for installation under Linux/OSX systems. 
The user supplies an “all sites” VCF and a populations file listing the 
population(s) of interest and the associated sample names as listed 

in the VCF genotype columns. Pixy's documentation (https://pixy.
readt​hedocs.io/) provides guidance on VCF generation and filtering. 
Pixy makes use of data structures provided by the Python module 
scikit-allel to efficiently handle invariant sites VCFs (Miles et al., 
2019). The user can quickly compute π and dXY over genomic win-
dows of arbitrary size.

F I G U R E  1  The logic and input/ouput of pixy demonstrated with a simple haploid example. (a) Comparison of two methods for computing 
π (or dXY) in the face of missing data. These methods follow the first expression of Equation 1 but differ in how they calculate the numerator 
and denominator. In Case 1, all missing data is assumed to be present but invariant. This results in a deflated estimate of π. In Case 2, missing 
data are simply omitted from the calculation, both in terms of the number of sites (the final denominator) and the component denominators 
for each site (the n choose two terms). This results in an unbiased estimate of π. (b) The adjusted π method (Case 2) as implemented for VCFs 
in pixy. The example VCF (input) contains the same four haplotypes as (a). Invariant sites are represented as sites with no ALT allele, and 
greyed-out sites are those that failed to pass a genotype filter requiring a minimum number of reads covering the genotype (Depth ≥ 10 in 
this case) [Colour figure can be viewed at wileyonlinelibrary.com]

https://pixy.readthedocs.io/
https://pixy.readthedocs.io/
www.wileyonlinelibrary.com
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The key difference between pixy and existing methods is 
the handling of missing data via dynamic adjusting of site-level 
denominators (which are propagated properly during windowed 
operations) and the adjustment of effective sequence length 
(Figure 1a). Case 1 in Figure 1a shows the calculation of π across 
four sequences under the simplifying assumption that missing 
sites are present but invariant; i.e., if a genotype is missing in a 
pairwise comparison, that genotype is assumed to be the refer-
ence allele. In contrast, the strategy implemented in pixy (Case 
2 in Figure 1a) excludes missing sites from both the numerator 
and the denominator of π or dXY. To illustrate how this strategy 
applies to a VCF, Figure 1b shows a simplified example of an “all 
sites” VCF file, where each genotype is accompanied by details 
about the data at that genotype (in this example, read depth). If a 
genotype is missing or filtered out, it does not contribute to either 
the numerator or the denominator in pixy's calculations. Because 
π and dXY utilize all pairwise comparisons between genotypes at 
each site, this process does not depend on phasing, and the com-
parisons are the same regardless of ploidy. To illustrate how this 
logic transfers to a diploid example, Figure S1 shows the same se-
quences as Figure 1, but depicts them as four haplotypes from 
two diploid individuals, rather than four haploid individuals. In the 
diploid example, genotypes from the same individual are paired 
in the VCF. This pairing changes only the formatting of the input, 
not the pairwise comparisons between genotypes or subsequent 
calculation of π or dXY.

Note that pixy, like most methods, estimates π and dXY using dis-
crete genotype calls of biallelic SNPs. As such, in order to minimize 
error from low-depth genotype calls, we recommend that the input 
VCF be filtered at the site level (e.g., using GATK best practices-style 
hard filters) prior to input. In addition, pixy can apply user-specified 
individual genotype level filters prior to the calculation of summary 
statistics. At minimum, we recommend that users apply a cutoff of 
DP >10 and GQ >30 for individual genotypes, and/or an average site-
level depth >10 and quality >30 (INFO-DP and QUAL / total # indi-
viduals). More stringent filters will result in lower variance in π and 
dXY estimates due to exclusion of genotyping errors, but for most 
studies, and given the number of sites in a typical windowed calcu-
lation of π and dXY (e.g., 10 kilobases) a cutoff of 10×/Q30 provides 
a good trade-off between retaining sites and filtration of errors (see 
Fumagalli, 2013). We outline the general workflow for filtering a VCF 
in the documentation (https://pixy.readt​hedocs.io/).

The output of pixy also includes all the raw information for all 
π and dXY estimates (i.e., the component numerators and denomi-
nators for all computations). The name pixy is a play on the original 
parameter name πXY, which was used by (Nei & Li, 1979) in place 
of dXY. All code is freely available on Github https://github.com/
ksamu​k/pixy, and detailed documentation is provided via readthe-
docs https://pixy.readt​hedocs.io/. The software is also available for 
installation via Anaconda on the conda-forge channel https://anaco​
nda.org/conda​-forge/​pixy. The a static version of the version of pixy 
used in this manuscript is archived at http://doi.org/10.5281/ze-
nodo.4432294 (Korunes & Samuk, 2021).

3  |  MATERIAL S AND METHODS

3.1  |  Simulated data: Coalescent simulations via 
msprime

To provide ground-truthed data sets for evaluating the performance 
of pixy, we simulated sequence data using the coalescent simula-
tor msprime (Kelleher et al., 2016). We created 10,000 simulated 
data sets, each with the following parameters: Effective population 
size = 1 × 106, mutation rate = 1 × 10−8, sample size = 100, num-
ber of sites = 10,000. We converted these to VCFs with invariant 
sites using a custom script (see code supplement). These data sets 
represent the case of “no missing data”. To explore the effects of 
different types of missing data, we randomly selected 100 of these 
original data sets as “parent” VCFs and then used these to simulate 
variable proportions of missing data (ranging from 0.0 to 0.99, in 
steps of 0.01). To simulate missing sites, we randomly dropped rows 
from each parent VCF. To simulate missing genotypes, we randomly 
converted a fixed proportion of genotypes in each parent VCF at 
every site to “./.” (missing). This resulted in a total of 30,000 VCFs 
of simulated data (10,000 original VCFs, and 10,000 “missing sites” 
VCFs and 10,000 “missing genotypes” VCFs).

3.2  |  Empirical data: Anopheles gambiae whole 
genome data

To evaluate the performance of pixy in a realistic use case, we ob-
tained short-read whole-genome sequencing data from two popula-
tions of Anopheles gambiae sequenced by the Ag1000G (Anopheles 
gambiae 1000 Genomes) Consortium (MalariaGEN, 2016). We se-
lected 18 individuals each from two populations: BFS (Burkina Faso) 
and KES (Kenya). Sample accessions and sequencing details are pro-
vided in Table S2. All sequences were aligned to the Anopheles gam-
biae AgamP4.12 reference genome (Giraldo-Calderón et al., 2015) 
using bwa-0.7.5a (Li & Durbin, 2009), after using Picard to mark adapt-
ers and duplicates (Broad Institute, 2019). Variants were called using 
gatk version 4.1.1.0, using the “-all-sites” flag of GenotypeGVCFs to 
generate “all sites” VCFs for input into pixy (McKenna et al., 2010; 
Van der Auwera et al., 2013).

3.3  |  Comparison to existing methods using both 
simulated and empirical data

We compared the accuracy of pixy's estimates of π and dXY with sev-
eral popular existing tools: vcftools, angsd, popgenome, and scikit-allel 
(Danecek et al., 2011; Korneliussen et al., 2014; Miles et al., 2019; 
Pfeifer et al., 2014). We computed π using pixy, vcftools, popgenome, 
scikit-allel, and angsd. Note that ANGSD was only applied to the em-
pirical data, since its diversity functions are not designed to work 
with VCFs. We computed dXY using pixy, popgenome, scikit-allel, and 
the angsd companion script “calcDxy” ( https://github.com/mfuma​

https://pixy.readthedocs.io/
https://github.com/ksamuk/pixy
https://github.com/ksamuk/pixy
https://pixy.readthedocs.io/
https://anaconda.org/conda-forge/pixy
https://anaconda.org/conda-forge/pixy
http://doi.org/10.5281/zenodo.4432294
http://doi.org/10.5281/zenodo.4432294
https://github.com/mfumagalli/ngsPopGen/blob/master/scripts/calcDxy.R
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galli/​ngsPo​pGen/blob/maste​r/scrip​ts/calcD​xy.R). For VCFtools, we 
used the “--window-pi” method to estimate windowed π. For scikit-
allel, we used the allel.sequence_diversity and allel.sequence_diver-
gence functions to estimate windowed π and dXY, respectively. For 
PopGenome, we used the nuc.diversity.within and nuc.diversity.
between functions, following the recommendations in the manual. 
We stress that the PopGenome manual explicitly warns that com-
puting π and dXY in the presence of missing data will result in biased 
estimates (Pfeifer et al., 2014). We have chosen to include it here 
because PopGenome is commonly used to estimate π and dXY in spite 
of this warning.

We first used our simulated data sets to examine pixy's accu-
racy in comparison to these existing methods. To obtain two sim-
ulated populations for evaluating dXY, we split the 100 simulated 
samples into two random groups. To standardize sample sizes be-
tween π and dXY estimates, we computed π using the first half of 
the simulated individuals (n = 50), and dXY by designating the first 
half of the individuals as drawn from “Population 1” and the sec-
ond half as drawn from “Population 2” (each with n = 50 individu-
als). We computed π and dXY in 10 kb windows in each of the VCFs 
with variable missing data. pixy was run using default settings, 
and each pre-existing method was applied using the functions de-
scribed above (see code supplement).

We then compared the accuracy of each method using the em-
pirical Anopheles gambiae data. To do this, we first applied a basic 
genotype-level hard filter (DP > =10, GQ >= 40|RGQ >= 40) to the 
invariant sites VCF produced by GATK. We also removed all variants 
apart from biallelic SNPs – like other existing methods, pixy does not 
support the calculation of summary statistics for INDELs or other 
structural variants. The filtered VCF was used as the input file for all 
methods apart from ANGSD (see below). We then computed π (pixy, 
vcftools, angsd, popgenome, scikit-allel) and dXY (pixy, popgenome, scikit-
allel, angsd) in 10 kb windows. We computed π separately for the 
BFS and KES populations. For ANGSD, the BAM files generated from 
the Anopheles BFS and KES populations were used as input, resulting 
in estimates of both π (ANGSD’s “pairwise theta”) and dXY (obtained 
via a companion script: calcDxy – by Joshua Penalba, https://github.
com/mfuma​galli/​ngsPo​pGen/blob/maste​r/scrip​ts/calcD​xy.R). In the 
case of π, we explicitly divided the raw estimates of pairwise theta 
by the number of sites (nSites) provided by ANGSD, and not the win-
dow size (10,000).

Full details and scripts for all of the above procedures are avail-
able at https://github.com/ksamu​k/pixy_analysis.

4  |  RESULTS

4.1  |  Validation of pixy results

We examined pixy's accuracy as an estimator of π and dXY by com-
paring pixy's results to pre-existing methods and theoretical expec-
tations. We conducted 10,000 simulations to generate data sets 
in which all samples have observed genotypes at all sites (i.e., no 

missing data). Neutral simulations with a known effective popula-
tion size and mutation rate allow us to compare pixy's output to 
the simple theoretical expectation of E(π) = 4Neμ (Hartl et al., 1997; 
Wakeley, 2016). To evaluate dXY, we split the simulated population 
into two random groups. In this case, 4Neμ is also the expected value 
of dXY (this can be conceptualized as computing dXY between two 
populations with a divergence time of zero: Hahn, 2019).

Using these simulated data, we compared the accuracy of pixy's 
estimates of π and dXY with several popular existing tools: VCFtools, 
PopGenome, and scikit-allel (Danecek et al., 2011; Korneliussen 
et al., 2014; Miles et al., 2019; Pfeifer et al., 2014). These tools rep-
resent some of the most cited software packages for calculating π 
and dXY. Notably, the PopGenome manual acknowledges that π and 
dXY estimates will be biased by missing data and includes a warning 
about computing estimates in the presence of missing data (Pfeifer 
et al., 2014). Nonetheless, users can and do use PopGenome to es-
timate π and dXY in the presence of missing data, so we chose to 
include it here. Using each of these software packages, we com-
puted π (and dXY where available) for each of the simulated data 
sets. Using the resulting sampling distribution of π and dXY from each 
estimation method, we compared the mean to the expected value 
of 4Neμ = 0.04 (Ne = 1 × 106, μ = 1 × 10−8). In the absence of miss-
ing data, all examined methods provide estimates of π and dXY that 
closely match theoretical expectations (Figure 2a,b; mean = 0.0398, 
standard error = 0.000189 for all sampling distributions). Estimates 
of π generated by pixy are identical to those of all other methods 
(R2 = 1.000, F = 1.47 × 106, df = 19,998, p < 2.2 × 10−16) and estimates 
of dXY are nearly identical (R2 = 0.987, F = 1.47 × 106, df = 19,998, 
p < 2.2 × 10−16) (Figure 2c,d). Overall, all compared methods have 
high accuracy and provide nearly identical estimates when data are 
complete.

4.2  |  Pixy is unbiased in the presence of 
missing data

We next examined pixy's accuracy in the presence of missing data. 
For a random set of 100 of the previously simulated data sets, we 
created subsets with varying quantities of missing data. This means 
that for each data set with missing data, we had a corresponding 
“parent” data set with complete data. Again, we computed π and 
dXY for each data set with the popular existing programs VCFtools, 
PopGenome, and scikit-allel.

In order to better visualize the effects of missing data, we 
scaled estimates of π and dXY for each data set with missing data 
by dividing by the estimate obtained from the parent data set with 
no missing data. This normalizes any initial differences in π among 
data sets due to sampling variance. After this normalization, we 
observed that pixy's π and dXY estimates remain unbiased in the 
face of missing data (Figure 3, left column). As the proportion of 
missing data increases, the variance in estimates of π and dXY in-
creases. This spread in estimates across both sides of the y = 1 line 
in Figure 3 increases as a function of missing data. Note, however, 

https://github.com/mfumagalli/ngsPopGen/blob/master/scripts/calcDxy.R
https://github.com/mfumagalli/ngsPopGen/blob/master/scripts/calcDxy.R
https://github.com/mfumagalli/ngsPopGen/blob/master/scripts/calcDxy.R
https://github.com/ksamuk/pixy_analysis
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that the mean (expected) values of π and dXY for pixy do not ex-
hibit any significant trend (flat red lines, pixy panels, Figure 3, lin-
ear model slope does not differ significantly from 0 for sites or 
for genotypes, p  >  0.2, Table S1). This is the expected behavior 
of an unbiased summary statistic in the face of missing data. In 
contrast, the three other methods all display a downward bias in 
their estimates of π and dXY that increases as a function of the 
proportion of missing sites or genotypes (nonpixy panels, Figure 3; 
all slopes significantly negative for missing sites and genotypes, 
all p < 2.2 × 10−16, Table S1). The effect of this bias was strongest 
for the case of completely missing sites, whereas missing geno-
types (sites with missing genotypes for some samples) only begin 
to display strong bias around 80% missing data for most meth-
ods (Figure 3). The notable exception to this was VCFtools which 
displayed a sharper increase in bias for “missing genotypes” than 
‘”missing sites” (Figure 3).

4.3  |  Analysis of empirical data: Anopheles gambiae

Finally, we applied pixy to an empirical data set: deep sequenc-
ing of Anopheles gambiae provided by the Ag1000 Genomes 
Consortium. We used pixy to generate windowed estimates of 
π on the X chromosome for a sample (n  =  18) of the A. gambiae 
Burkina Faso (BFS) population, and we compared these estimates 
to those generated by popular pre-existing methods. We also ex-
amined dXY between the 18 BFS samples and 18 additional sam-
ples from the KES (Kenya) population (Table S2). In addition to the 
three previously explored programs (VCFtools, PopGenome, and 
scikit-allel), we included estimates of π and dXY from the software 
ANGSD (Korneliussen et al., 2014). ANGSD relies on genotype 
likelihoods calculated using the reads covering a position, making 
it incompatible with our simulated data but equipped to handle 
empirical sequencing data.

F I G U R E  2  Comparison between pixy and existing methods in complete data sets. (a, b) The sampling distribution of π (a) and dXY (b), as 
estimated from 10,000 simulated data sets using pixy and a variety of existing methods (see text for details). The red dotted line denotes 
the theoretical expectation for the mean of the sampling distribution, 4Neμ = 0.04 (which is the same for π and dXY in this particular case). 
The observed means of the sampling distributions are marked with inverted triangles. For clarity, estimates of π and dXY above 0.100 are 
aggregated in the last bin (“0.100+”). (c, d) direct comparisons between pixy's estimates of π (c) and dXY (d) and those from existing methods 
[Colour figure can be viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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All four methods yielded estimates of π that were correlated 
with pixy's estimates (Figure 4, R2  =  0.68 for vcftools, 0.82 for 
angsd, and 0.79 for both PopGenome and scikit-allel). However, 
the previously identified biases caused by missing data appeared 
to result in substantial differences in estimates of π in many cases 
(Figure 4). In general, the compared methods tend to underesti-
mate π, with the exception being angsd. This downward bias is seen 
as the grouping of estimates above the y = x line in Figure 4a,c,d. 

As expected, the magnitude of this bias was closely correlated with 
the proportion of missing data (Figure 4, Figure S2). For the rela-
tively complete regions of our subset of the Ag1000g data set, the 
apparent underestimation of π was low (around –5%), but rapidly 
increased in cases of even moderate missingness (e.g., as much as 
–95% in cases of just 25% missing data, Figure S2). As expected, 
the same pattern of bias was also apparent for estimates of dXY 
(Figures S3 and S4).

F I G U R E  3  Comparison between pixy and existing methods in the presence of missing data. (a) π and (b) dXY are shown as scaled 
estimates (each estimate is scaled by dividing by the estimate obtained from the parent data set with no missing data). Perfect congruence 
between estimates in the presence and absence of missing data is shown with the dotted line at y = 1. Estimates were obtained from 
data sets with varying proportions of missing genotypes (top row, a and b) and sites (bottom row, a and b) [Colour figure can be viewed at 
wileyonlinelibrary.com]
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5  |  DISCUSSION

Modern population genomic analyses frequently rely on π and dXY 
as measures of diversity and divergence, but these summary statis-
tics are deceptively difficult to accurately calculate (Gillespie, 2004; 
Hartl et al., 1997). Specifically, the correct handling of missing and 
invariant sites presents a common pitfall in the calculation of π and 
dXY. This challenge stems in part from the way genetic variation data 
is commonly encoded. The widely used Variant Call Format typically 
condenses data down to only variant sites and does not maintain 
information about which sites had insufficient data for genotyping 
and which sites were genotyped as invariant (Danecek et al., 2011). 
If π and dXY are calculated under the assumption that missing data 
are invariant, then the resulting estimates of π and dXY are likely to 
be downwardly biased in many cases.

We observe this downward bias in our application of several 
popular tools using both simulated and empirical data sets. While 
many population geneticists recognize that such tools must be ap-
plied with caution, the lack of formalized best practices and available 
software for calculating π and dXY in the presence of missing data 
leads to inconsistent approaches across studies. It also places the 
onus on the user to devise ad hoc methods to handle missing data 
when using common software. Pixy provides a user-friendly com-
mand line utility for estimating π and dXY in a manner unbiased by 
the presence of missing data. We leverage a common strategy for 
distinguishing missing and invariant sites by (i) making use of VCFs 
including invariant sites, and (ii) employing algorithms that explicitly 
account for missing data. More generally, our comparison of pixy to 
existing tools demonstrates the consequences of failing to handle 

missing data properly and underscores the potential pervasiveness 
of this problem in population genetics.

In addition to generally underestimating π and dXY, failing to 
properly handle missing data can also create a correlation between 
π/dXY and “missingness”, or the proportion of missing genotypes. This 
relationship is noteworthy since missingness is often tied to various 
features of the genome or of the data itself. For example, genomic 
features such as transposable elements or structural variation can 
cause variable assembly and mapping quality (O'Leary et al., 2018). 
Relatedly, individuals within a sample often have variable missing-
ness (e.g., due to sample quality variation), which can generate false 
differences in π and dXY if these vary systematically among biologi-
cal units (e.g., between populations). Differences in genomic library 
preparation technique can also affect missingness, for example ge-
nome complexity reduction techniques (e.g., RAD-Seq or GBS) may 
present particularly variable and high levels of missingness relative 
to high-coverage whole-genome sequencing (Elshire et al., 2011; 
Lowry, 2017). However, as seen with our case study of Anopheles 
gambiae data, even ~30× coverage whole-genome sequencing can 
exhibit significant downward bias in π estimation when missing data 
is not taken into account (e.g., Figure S2). This is concerning, as this 
relatively high-quality, well-curated data set is probably close to a 
“best case” scenario for missingness, and most data sets will proba-
bly fare much worse. Given these considerations, we argue that best 
practices for calculating π and dXY should always explicitly account 
for missing data.

One notable exception to the patterns we identified here was 
the likelihood-based method ANGSD (Korneliussen et al., 2014). 
ANGSD did not appear to display a systematic underestimation of π 

F I G U R E  4  Comparisons of estimates of 
π from whole genome data derived from 
18 Anopheles gambiae individuals from the 
Ag1000G Burkina Faso (BFS) population. 
Each panel (a–d) depicts the estimates 
of π for the X chromosome performed 
using pixy (y-axis) and four other methods 
(x-axis, a–d). Points are coloured according 
to the proportion of missing data (of any 
type) calculated by pixy. The 1:1 line is 
shown in red [Colour figure can be viewed 
at wileyonlinelibrary.com]
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or dXY in the face of missing data. However, the estimates produced 
by ANGSD are not fully congruent with pixy, and ANGSD appears 
to generate systematically higher estimates of π or dXY in some sce-
narios (Figure S2). While it is outside the scope of our current effort 
to systematically explore how ANGSD reacts to missing data, we 
note that it employs a rather different approach to analysis by work-
ing with allele frequencies derived from genotype likelihoods rather 
than directly counting called genotypes. This approach does have 
the advantage of potentially reducing biases due to low sequencing 
coverage and/or reference bias (although these biases could be mit-
igated by more stringent depth filters). It is also important to note 
that the calculation of dXY using ANGSD required post-processing 
using a third party script, as well as further processing using a cus-
tom script (written by the authors of this paper) to average over win-
dows (see code supplement). As such, readers are cautioned that (i) 
ANGSD itself does not actually provide estimates of dXY, and (ii) the 
ad hoc method that many users cite has not to our knowledge been 
formally validated. The lack of a single validated protocol for calcu-
lating dXY (or even π) using ANGSD suggests there may be a great 
deal of interstudy variation in estimates produced with ANGSD. It 
also differs from the other software used here in that ANGSD was 
not designed to analyse VCFs (though recent versions do input and 
output VCFs with some limitations), and thus may be more difficult 
to apply to many data sets.

While pixy was designed to provide a user-friendly end-to-end 
solution for the unbiased calculation of π and dXY, it may be possi-
ble for more advanced users to achieve similar results with existing 
tools. For example, with the inclusion of a user-created “accessibility 
mask”, it should be possible to avoid the “missing sites” effect seen 
in Figure 3a. Further, in response to the preprint of this manuscript, 
scikit-allel provided options to address the “missing genotypes” 
effect. As such, scikit-allel is a good option for Python-literate ad-
vanced users who are aware of the potential pitfalls of calculating 
population genetic statistics like π and dXY. Pixy is naturally less flex-
ible, but guides users more explicitly to confront and avoid common 
pitfalls.

While the unbiased methods provided by pixy are an important 
resource for facilitating π and dXY calculation, much work remains 
to correct systemic issues in estimating diversity and divergence. 
Future studies are needed to address how missing data may affect 
the wide variety of other population summary statistics and tests 
(e.g., Wong et al., 2019). Another important area of future work is 
the development of file formats that efficiently store genetic data 
while maintaining the ability to distinguish well-supported invariant 
sites from sites which have insufficient information to determine 
whether they are truly invariant. As the field of population genetics 
advances, we hope that articulating this issue will provide ground-
work for handling missing data as new file formats arise and new 
tools are developed.
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