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SUMMARY

While recombination is widely recognized to be a key
modulator of numerous evolutionary phenomena, we
have a poor understanding of how recombination
rate itself varies and evolves within a species. Here,
we performed a comprehensive study of recombina-
tion rate (rate of meiotic crossing over) in two natural
populations of Drosophila pseudoobscura from Utah
and Arizona, USA. We used an amplicon sequencing
approach to obtain high-quality genotypes in approxi-
mately 8,000 individual backcrossed offspring (17
mapping populations with roughly 530 individuals
each), for which we then quantified crossovers. Inter-
estingly, variation in recombination rate within and be-
tween populations largelymanifested as differences in
genome-wide recombination rate rather than remodel-
ing of the local recombination landscape. Comparing
populations, we discovered individuals from the Utah
population displayed on average 8% higher crossover
rates than the Arizona population, a statistically signif-
icant difference. Using a QST-FST analysis, we found
that this difference in crossover rate was dramatically
higher than expected under neutrality, indicating that
this difference may have been driven by natural selec-
tion. Finally, using a combination of short- and long-
read whole-genome sequencing, we found no signifi-
cantassociationbetweencrossover rateandstructural
variation at the 200–400 kb scale. Our results demon-
strate that (1) there is abundant variation in genome-
wide crossover rate in natural populations, (2) at the
200–400 kb scale, recombination rate appears to vary
largely genome-wide, rather than in specific intervals,
and (3) interpopulation differences in recombination
rate may be the result of local adaptation.

INTRODUCTION

Meiotic recombination is the exchange of genetic material be-

tween homologous chromosomes that occurs during meiosis.

This exchange has two major forms, crossing over and non-

crossover gene conversion, both of which are initiated by the for-

mation of a double-strand break duringmeiosis. Recombination,
particularly crossing over, is a keymediator of chromosome pair-

ing during meiosis, with most species exhibiting an average of

one crossover per chromosome arm [1, 2].

While physical constraints often set a lower bound on rates of

recombination, the evolution of recombination rate and particu-

larly the rate of crossing over (i.e., number of crossovers per gen-

eration in a genomic interval) can have far-reaching effects on

nearly every evolutionary process [2–4]. For example, recombi-

nation rates can modulate processes as diverse as adaptation

to a new environment, the evolution of reproductive isolation,

and the dynamics of introgression between populations [5–8].

More generally, recombination rate determines the degree to

which an individual’s parental chromosomes are mixed in their

gametes—i.e., how often novel allelic combinations are gener-

ated in their gametes. Increases or decreases in this rate can

be favored under different evolutionary or ecological conditions.

For example, increasing the rate of recombination can facilitate

adaptation by increasing the probability that adaptive and mal-

adaptive alleles will be decoupled or that adaptive alleles will be

brought together in the same genotype (i.e., overcome Hill-Rob-

ertson interference [9]). Increased rates of recombination are

similarly favored when fitness optima change rapidly between

generations, e.g., under fluctuating selection [10]. On the other

hand, lower recombination rates can be favored under scenarios

in which adaptive combinations of alleles are at risk of being

broken apart, such as under maladaptive gene flow [11]. Reduc-

tion/suppression also appears to have important consequences

for the evolution of reproductive isolation [11, 12] and patterns of

introgression and divergence in the genome [8, 13, 14].

While there is a rich theoretical literature focused on the evolu-

tion of recombination rate, empirical studies have lagged some-

what behind. One reason for this may be that recombination rate

is difficult to quantify directly—it generally requires the construc-

tion of a linkage map from a genetic cross and/or cytological

visualization of recombination-associated proteins [2, 15, 16].

Recently, many studies have attempted to overcome this diffi-

culty by instead estimating a population genetic quantity known

as ⍴, the population scaled recombination rate [17]. This quantity

is the product of four times the effective population size and real-

ized recombination rate (sometimes denoted ‘‘c’’) [18]. The gen-

eral approach to estimating ⍴ is to perform coalescent simula-

tions and fit a simulated value of ⍴ to observed patterns of

linkage disequilibrium (LD) [19–21]. While this approach has

proven successful at recapitulating many of the general features

of the recombination landscape in many species, it is not able to

disentangle changes in LD per se (e.g., as a result of selection or
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demography) from changes in recombination rate (either locally

or genome-wide) [21, 22]. Further, these methods are highly

sensitive to increases in LD that occur as a result of gene flow be-

tweenpopulations [22–24]. As such, LD-basedmethodsare likely

to be less appropriate for the study of the evolution of recombina-

tion rate than direct estimates of recombination rate.

In spite of methodological difficulties, there has been a recent

resurgence of interest in the empirical study of the evolutionary

causes and consequences of recombination rate [2, 4, 25].

One key contributor to this resurgence has been the democrati-

zation of high-throughput genotyping, which has increased

the tractability of creating high-density linkage maps in non-

model species (e.g., using pedigreed populations or gametic

sequencing [26, 27]). The increased availability of such linkage

maps has in turn led to a growing appreciation of the enormous

diversity in recombination rate that exists between taxa [25]. This

variation canmanifest globally, i.e., genome-wide, or locally, i.e.,

along a specific tract of a chromosome [25, 28].

Studies using direct estimates of recombination rate have

largely focused on describing differences in recombination

between species or sexes [25, 29, 30]. However, there are surpris-

ingly few studies focused on directly testing evolutionary

hypotheses concerning variation in recombination rate. For

example, a key question that emerges from the theoretical litera-

ture is, is variation in recombination rate shaped by natural

selection [5, 10, 31]? While a tempting research direction, the dif-

ficulty in measuring and manipulating recombination rate makes

testing adaptive hypothesis a non-trivial enterprise [2, 4]. One

approach may be experimental evolution, in which the proposed

selective agent that favors/disfavors changes in recombination

rate is experimentally varied, evolveddifferences in recombination

rate are quantified, and these differences are then compared to a

null (non-adaptive) expectation [32]. This approach is powerful but

highly laborious and difficult to apply to natural systems. A more

broadly applicable method for detecting the influence of natural

selection on a quantitative trait is perhaps the QST-FST approach

[33].Originating in thequantitativegenetics literature, thispowerful

method is designed to answer the question: are the observed dif-

ferences between populations in a quantitative trait greater than

expected on the basis of drift alone [33, 34]? This question is

formalized as a statistical hypothesis test that compares variation

in a quantitative trait (QST)within andbetweenpopulations to a null

distribution of variation in neutral genetic markers (FST) within and

betweenpopulations [34, 35].While theQST-FST is subject tomany

of the same limitations and assumptions as other methods for

studying natural selection in the wild it is also has a number of ad-

vantages, including the ability to detect very recent natural selec-

tion and robustness to a variety of common demographic pertur-

bations (e.g., changes in population size or levels of migration).

While theQST-FSTmethod has enjoyed great success in the quan-

titative and evolutionary genetics literature, it has not yet been

applied to testing the role of selection in shaping recombination

rate. Given its flexibility and applicability to any quantitative trait,

we see QST-FST as an ideal approach to this problem.

Along with quantifying intraspecific variation and the role of nat-

uralselection,wealsohaveapoorunderstandingof thegeneticba-

sis of differences in recombination rate between populations and

species. As is the case for other traits, identifying the genetic archi-

tecture of evolutionary changes in recombination rate allows for a
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more complete explanation for how and why recombination rate

evolves [36]. One specific question is the degree towhich variation

in recombination ratemanifests as a local versus global phenome-

non. Local variation in recombination can arise due to structural

variants that suppress recombination such as inversions and large

deletions [37–39]. In contrast, global variation can arise frommuta-

tions in the genes involved in meiosis and/or double-strand break

repair pathways [40]. Modifiers of both global and local rates of

recombination have been identified in laboratory and/or interspe-

cific crosses, but their occurrence in natural populations of individ-

ual species is only just beginning to be explored [26, 29, 40–42].

Here, we performed a comprehensive study of recombination

rate (meiotic rates of crossover) in two natural populations of

Drosophila pseudoobscura from Utah and Arizona, USA. We

made use of modern sequencing and genetic map construction

methods, along with the QST-FST approach. We first constructed

individual-level genetic maps and discovered ample quantitative

genetic variation for recombination rate within and between pop-

ulations of D. pseudoobscura. Interestingly, we found that this

variation largely manifested as differences in genome-wide

recombination rate rather than remodeling of the local recombina-

tion landscape. Interindividual differences in local genome struc-

ture (e.g., structural variation) did not appear to influence recombi-

nation rate at the scale of measurement, again suggesting that

variation in recombination rate is largely governed by global mod-

ifiers. Finally, using the QST-FST approach, we discovered that be-

tween-population differences in recombination rate are much

greater than expected under a pure-drift model, suggesting that

natural selection may have shaped recombination rate variation

in D. pseudoobscura. Together, these results provide direct evi-

dence for genetic variation in global modifiers of recombination

and support the hypothesis that natural selection can and does

act to shape recombination rate in natural populations.

RESULTS

Genome-wide Recombination Rate Varies within and
between Populations
Genome-wide recombination rate varied significantly within and

between the D. pseudoobscura populations we studied. Within

lines, there was a range of 4.27–5.86 crossovers per genome,

corresponding to 0.85–1.00 crossovers per chromosome arm

on average (Figure 1A). This between-line variation was statisti-

cally significant (p < 2.2 3 10�16, likelihood ratio test statis-

tic = 141.13, df = 1, comparison via dropping random effect of

inbred line). At the population level, lines from American Fork

Canyon, UT, had 5.20 ± 0.17 crossovers per genome on

average, while lines from Madera Canyon, AZ, had 4.82 ± 0.21

crossovers per genome on average, a significant difference in

genome-wide crossover rate (Figure 1B; type II Wald test,

p = 0.018, df = 1; likelihood ratio test, X2
1 = 4.794, p = 0.028).

That said, despite genome-wide differences, the local rates of

recombinationwere extremely similar among individuals and pop-

ulations (Figures 1C and 2A; R2 = 0.96, correlation test t = 68.866,

df = 207, <2.2 3 10�16). Indeed, in contrast to the aggregate

genome-wide difference we observed in Figure 1B, only 19 of

the 209 recombination intervals we assayed displayed significant

population-specific differences at the a = 0.05 level, and none

were significant after false discovery rate (FDR) correction
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Figure 1. Recombination Rate Varies within and between Populations of D. pseudoobscura

(A) Variation in genome-wide crossing over frequency for 17 inbred lines. Lines are colored according to their population of origin (green, MC [Madera Canyon,

AZ]; red, AFC [American Fork Canyon, UT]). Points depict the mean crossover frequency for each line with vertical lines representing 95% confidence intervals

(n = 384 per line).

(B) Differences in crossover frequency between AFC andMC. Jittered points are individual line means (from A), and larger points aremarginal means derived from

mixed model regression coefficients along with 95% confidence intervals (error bars).

(C) Variation in recombination rate across the genome. Each panel depicts recombination rate along a single chromosome arm (columns) in one of two pop-

ulations (rows). Thick lines depict population average recombination rates, with lighter lines depicting rates for individual inbred lines. Note that in

D. pseudoobscura the X chromosome takes the place of a chromosome ‘‘1.’’

See Figure S2 for comparisons of marker orders between maps. See Figure S3 for an example of GLMM model fit diagnostics. See Figures S4 and S5 for in-

formation on the fine-scale differences in recombination between populations and lines. See Tables S1 and S2 for raw crossover estimates.
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(Figure S4). That said, some recombination intervals did show a

significant effect of inbred line identity (Figure S5) suggesting

that there may be genetic variation for local recombination rates

at the 200–400 kb scale. Finally,we found that chromosome-scale

recombination rates were highly correlated within lines, such that

there was a strong trend that lines with high recombination rate

on one chromosome tended to also have high recombination on

other chromosomes (Figure 2B; average R2 = 0.78, all correlations

significant via correlation tests, p < 0.0001). In sum, these results

suggest that phenotypic variation in recombination rate within

and between populations largely manifests at the genome-wide

scale. That said, our marker density prevents us from ruling out
finer-scale population-level differences in the recombination land-

scape (i.e., at the <200 kb scale).

Population Differences in Recombination Rate Are
Greater Than Expected under Neutrality
As expected from previous studies, genetic divergence between

Madera Canyon, AZ, and American Fork Canyon, UT, was very

low: genome-wideWeir andCockerham’sFST was approximately

0.0039 (Figure 3A; mean FST of 6 591 high-quality SNPs, MAF >

0.1, LD > 0.2; FST computed using WGS from inbred lines was

highly similar). Examining variation in recombination rate, we esti-

mated a within-population (between line) variance component of
Current Biology 30, 1–12, April 20, 2020 3
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Figure 2. Recombination Rate Varies Primarily at the Genome-wide Scale

(A) The correlation between recombination rates measured in genomic windows (�300 kb in size) in the MC and AFC populations. Each dot depicts a single

genomic window (all chromosomes combined).

(B) The correlation between chromosome-wide mean recombination rates between all pairs of chromosomes. Each point represents the recombination rate on

two chromosomes for a single inbred line. Points and lines are colored to indicate the particular pair of chromosomes being compared. Positive trends indicate

that recombination rates are consistent across chromosomes within lines (i.e., they vary genome-wide and not idiosyncratically across chromosomes).

See Figure S2 for comparisons of marker orders and recombination fractions between line-specific genetic maps and Figures S4 and S5 for more detailed

analyses of local variation in recombination rate.
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0.066 and a between-population variance component of 0.018,

yielding an observed QST of 0.212 (Figure 3A; dashed arrow).

Our parametric bootstrap simulations of Qn
ST suggest that this

value of QST is highly unlikely to be observed under neutrality

(0 of 10,000 Qn
ST replicates were greater than the observed value

of QST ; thus, p < 1.0 3 10�4). Similarly, the parametric bootstrap

estimates of QST-FST under neutrality do not overlap with the

parametric bootstrap observed values of QST-FST , even when

taking intoaccount sampling variance (Figure3B). Together, these

results indicate that, while the observed phenotypic difference in

recombination rate between Madera Canyon (MC) and American

ForkCanyon (AFC) ismodest, it greatly exceeds itsexpectedvalue

under neutrality. This result is consistent with the hypothesis that

natural selection hasdriven the observeddifference in recombina-

tion rates between populations.

Nonsynonymous Differences in Meiosis Genes Are
Correlated with Recombination Rate
Of the 46 candidate genes examined, 33 had at least one nonsy-

nonymous polymorphism. Of these 33 genes, there were a total

of 357 codons (out of a total of 29,964) with at least one nonsynon-

ymous polymorphism. After controlling for multiple comparisons

threeof thesesites in twogenes (aspandmei-41) were significantly
4 Current Biology 30, 1–12, April 20, 2020
associatedwith crossover rate (FDR adjusted p < 0.05, Figure 4A).

Both asp andmei-41play key roles in meiosis and recombination:

asp is involved in spindle pole formation during cell division (both

mitotic and meiotic) whereas mei-41 (also known as ATR) is an

important regulator of double-strand break repair and meiosis

checkpoint activation [43, 44]. Homozygous, nonsynonymous

polymorphisms in these geneswereassociatedwith a 5%–7%dif-

ference in recombination ratebetween lines (Figure4B). Therewas,

however, strong LD (r2 > 0.8) between these alleles (e.g., lines with

the lowest averagedcrossover rates sharedgenotypic states for all

three genes), and thus disentangling their independent effects on

recombination rate was not possible. We also note that the small

number of lines examined here precludedmore powerful associa-

tion methods (e.g., full genome-wide association study [GWAS]),

and further work will be required to experimentally validate the

contribution of these genes to variation in recombination rate.

Structural Variation Does Not Explain Differences in
Recombination Rate
Both short and long-read sequencing revealed extensive struc-

tural variation between inbred lines of D. pseudoobscura. As

expected, the three strategies we used to detect structural vari-

ation (GATK INDELs, PacBio SV and LUMPY/Smoove) varied in
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Figure 3. Recombination Rate QST-FST Exceeds Neutral Expecta-

tions

(A) Weir and Cockerham’s FST from 6,591 RADseq-derived SNPs (mean FST =

0.0039). The observed value of QST for recombination rate (0.212) is indicated

with an arrow.

(B) Comparisons of the sampling distribution of QST-FST expected under

neutrality and the observed value. Both distributions were simulated via a

parametric bootstrap (see text). Black points with error bars indicate the mean

and 95% confidence interval of the sampling distributions.
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the number and relative proportions of the various classes of

structural variant they identified (Figure S6). That said, all three

methods suggested that the most common form of structural

variation are small to mid-sized (10–100 bp) INDELs, with larger

deletions, insertions, and duplications being much rarer (Fig-

ure S6). Consistent with the observation that AFC and MC are

highly similar in their chromosomal arrangements, our structural

variant analysis found no evidence of large-scale chromosomal

inversions differentiating any of the lines.

Structural variation between lines did not co-vary with recom-

bination rate (Figure 5). First, there was no relationship between

recombination rate and the estimated percent sequence homol-

ogy between the tester and inbred lines (Figure 5B, likelihood

ratio test comparison of GLMMs, df = 3, p = 0.3989). Second,

there was no relationship between recombination rate and the

count of differences in structural alleles between each inbred
line and the tester line (Figure 5A, likelihood ratio test comparison

of GLMMs, df = 3, p = 0.7617). This result was consistent across

all methods used to identify structural variation (likelihood ratio

tests, comparison of GLMMs with and without method by

count/homology interaction effects, all p > 0.3). As such, at the

300 kb scale, there is no evidence that the local differences in

recombination rate among inbred lines are a result of differences

in homology or local genome structure.

DISCUSSION

Recombination rate is a keymodulator of many evolutionary pro-

cesses, yet we have a poor understanding of how recombination

rate itself evolves. Here, we studied how recombination rate

varies using strains from two natural populations of

D. pseudoobscura from Madera Canyon, AZ, and American

Fork Canyon, UT. We directly measured recombination rate in

a total of 17 inbred lines from these populations and found sub-

stantial variation for recombination rate both within and between

populations. Interestingly, the population from Madera Canyon,

AZ, exhibited an �8% lower recombination rate on average

than the population from American Fork Canyon, UT. Within-

and between-population variation in recombination rate mani-

fested largely as differences in genome-wide recombination

rate, rather than changes in the local recombination landscape.

This finding is supported by a general pattern of covariation in

recombination rate among chromosomes within lines. That

said, our choice to assay greater numbers of individuals in fewer

genomic intervals prevents us from ruling out the possibility of

finer-scale differences in the recombination landscape between

populations and lines. While overall differences in recombination

rates between populations were modest in absolute terms (�8%

depending on the interval), a QST-FST analysis revealed that this

difference vastly exceeds the amount of phenotypic divergence

expected under neutral drift. This result is consistent with the

hypothesis that local adaptation has driven differences in recom-

bination rate between these populations.

We explored two possible mechanisms underlying recombi-

nation rate differences between lines. First, we found evidence

that some differences in recombination rate between lines may

involve nonsynonymous coding changes in meiosis-related

genes. Second, we found that local variation in recombination

rate between lines does not correlate with local structural varia-

tion at the 300 kb scale. These findings suggest that the differ-

ences in recombination we observed were driven by alleles

resulting in genome-wide changes in recombination rate rather

than local remodeling of the recombination landscape. Below,

we discuss the relevance of our findings for the study of the evo-

lution of recombination rate and relationships to previous work.

Recombination Rate Variation in Natural Populations
Previous work has shown that recombination can vary between

individuals, or between populations/species [25, 26, 45–47].

These studies have ranged from early work on chiasma fre-

quency in snails [48] to more recent work leveraging modern hu-

man population genomic data [49, 50]. The bulk of this work has

focused on describing variation in recombination and its

potential molecular correlates. Further, most studies of natural

populations have measured recombination in uncontrolled
Current Biology 30, 1–12, April 20, 2020 5
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Figure 4. Nonsynonymous Substitutions Associated with Variation in Recombination Rate

(A) Regression coefficients from linear models (y axis) comparing genotype and crossover rate for sites (points) bearing nonsynonymous, non-reference poly-

morphisms in a collection of meiosis-related candidate genes (x axis). White points indicate associations that were significant after adjustment via FDR correction

(adjusted p < 0.05).

(B) Mean recombination rates (crossovers per chromosome arm) for sites with significant associations (red points in A). Each panel depicts the mean and 95%

confidence interval for crossover rates for each genotypic class (either 0/0, homozygous reference or 1/1, homozygous nonsynonymous non-reference).

See Table S3 for list of candidate genes. See Figure S3 for an example of GLMM model fit diagnostics.
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environments (e.g., in the wild [25]. Our study contributes to this

literature directly examining genetic variation for recombination

rate both within and between natural populations of a single spe-

cies and performing one of the first tests that this variation is

shaped by natural selection. Together with previous work, our

study contributes to a growing body of evidence that there is

ample genetic variation for recombination rate in natural popula-

tions and that recombination rate is actively evolving on observ-

able timescales.

Second, we found that recombination rate varies primarily at

the genome-wide scale rather than via variation in specific

genomic regions. Our candidate gene analysis suggests that

this variation in genome-wide recombination rate may be the

result of allelic variation in meiosis-related genes (i.e., asp

and mei-41). This is in line with previous work connecting ge-

netic variation in genes regulatingmeiosis and/or crossover for-

mation to variation in variation in genome-wide recombination

rate [29, 47, 49, 51, 52]. The emerging evidence for natural vari-

ation in gene-wide modifiers of recombination is particularly

intriguing given that many theoretical models of recombination

evolution make use of abstract ‘‘modifier’’ alleles that alter

genome-wide rates of recombination [5, 6]. Further character-

ization of such modifiers in natural populations may eventually
6 Current Biology 30, 1–12, April 20, 2020
allow direct tests of theoretical models of recombination evolu-

tion [2].

Local Adaptation of Recombination Rate
Our QST-FST analysis suggests that differences in recombination

rate between Drosophila pseudoobscura populations from AZ

and UTmay have been driven by natural selection. To our knowl-

edge, this is the first application of the QST-FST method to the

study of recombination and among the first evidence for the

role of selection acting on genome-wide recombination rate in

natural populations [40]. However, while our results suggest a

role for natural selection, the agent of selection underlying this

change remains unknown. There are a wide variety of possible

explanations for this difference [2]. For example, differences in

recombination between the populations may be directly favored,

or other phenotypic differences may be divergently selected

between the populations that incidentally affect recombination

rate (via linkage or pleiotropy). One intriguing possibility is local

differences in climate: recombination rate inDrosophila is known

to be plastic with respect to ambient temperature [53]. Madera

Canyon, AZ, has a mean annual temperature of approximately

eleven degrees Celsius higher than American Fork Canyon, UT

(10.5�C versus 21.6�C [54]). Assuming that the temperature
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Figure 5. Structural Variation Is Not Correlated with Recombination Rate at the 300 kb Scale
(A) The relationship between normalized recombination rate and the normalized count of structural differences between each inbred line and the tester line. Each

point represents a single recombination interval (all approximately 300 kb in length) from one inbred line. Lines on each plot represent smoothed conditional

means and are accompanied by 95% confidence intervals. Each column depicts the relationship using each of the three methods used to assay structural

variation.

(B) As in (A), but depicting the relationship between normalized recombination rate and the difference in total sequence length between each inbred line and the

tester line.

See Figure S3 for an example of GLMM model fit diagnostics. See Figure S6 for a detailed summary of the frequency and size of different classes of structural

variation.

Please cite this article in press as: Samuk et al., Natural Selection Shapes Variation in Genome-wide Recombination Rate in Drosophila pseudoobs-
cura, Current Biology (2020), https://doi.org/10.1016/j.cub.2020.03.053
reaction norm is similar in both populations, this higher temper-

ature could, for example, cause an increase in realized recombi-

nation rate in the Madera Canyon population in the wild. We

speculate that the difference in recombination rate we observed

under constant conditions may be a compensatory response to

an environmentally induced increase in recombination rate in or-

der to return genome-wide recombination rate to some optimum

value (i.e., a response to maladaptive plasticity [55]). Further

work will naturally be needed to connect variation in recombina-

tion rates to specific agents of selection. One obvious extension

of our approach would be a greater number of populations,

perhaps existing over a climatic gradient (or paired populations

in differing environments). We hope that our demonstration of

the efficacy of the QST-FST method inspires the undertaking of

such eco-evolutionary studies of recombination rate.

One caveat regarding our application of the QST-FST method is

that our estimates of recombination come fromF1s, andwewere

thus only able to observe genetic variation underlain by dominant
and co-dominant effects. This is not ideal, as it potentially alters

the distribution of QST relative to FST, which could bias the

outcome of the QST-FST test [35]. A dedicated simulation study

aimed at understanding the direction and magnitude of this

bias would be of great utility for future work on recombination us-

ing inbred lines.

Structural Variation as a Modulator of Recombination
Rate
We found no association between among-line variation in

recombination rate and among-line variation in the abundance

or size of structural variants. An important consideration here

is that this analysis was not intended to test whether average

recombination rate (across all lines) is associated with structural

variation—this association is extremely well documented and is

unquestionably present in our data [56–58]. Instead, our goal

was to test whether among-line variation in recombination rate

in each genomic interval was explained by among-line structural
Current Biology 30, 1–12, April 20, 2020 7



Figure 6. Schematic of the Crossing Design

and One Method of Interfering Crossovers

(A) Isolines from MC and AFC were individually

crossed to tester lines to generate F1s, whichwere

subsequently crossed to a ‘‘donor line’’ sharing

the same genotype as all isolines, but a different

genotype than the tester line at all marker loci.

(B) Further, all markers were selected such that

only two alleles were found in all lines, with the

tester line having one allele (‘‘1’’) and all other lines

including the donor line having the other (‘‘0’’). As

shown, this allows for the scoring of crossovers as

changes in heterozygosity.

(C) Example genotypic data from one chromo-

some showing the number of inferred crossovers.

White genotype states indicate missing data.

See also Figure S1 for details on the performance

of GT-seq and Table S4 for GT-seq primer

sequences.
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differences, using normalizedmetrics of both recombination rate

and structural variation within each genomic interval (as Z

scores, i.e., statistical controlling for average recombination

rate).

Why was there no detectable association between structural

variation and local rates of recombination? For one, our F1 cross

design is not able to detect recessive-acting effects of structural

variation (e.g., those that only affect recombination in homozy-

gous form). Second, a key consideration in interpreting these re-

sults is the scale of our recombination estimates: much of the

previous work describing the effects of heterozygous structural

variation on crossing-over was performed at much finer scale,

e.g., <1 kb in Arabidopsis [59]. It may be that changes in recom-

bination resulting from structural variation are restricted to finer

genomic scales (i.e., <300 kb) and that other types of regulators

(e.g., variation in meiosis genes or the chromatin landscape)

modulate recombination at larger scale [40]. A notable exception
8 Current Biology 30, 1–12, April 20, 2020
to this is large-scale chromosomal inver-

sions (notably absent in our lines), which

are well known to affect recombination

at scales much larger than 300 kb—up-

ward of 10 Mb in many cases [60, 61].

However, inversions likely have outsized

recombination suppressing effects

compared to other forms of non-homol-

ogy because of the loop structures they

form during chromosome pairing [60,

62]. Further work will be required to

disentangle the relative contribution of

structural and global/trans modifiers of

recombination rate at different genomic

scales.

Amplicon Sequencing as a Tool for
Genetic Maps
Our ability to economically sequence

hundreds of markers in thousands of in-

dividuals was made possible by the gen-

otyping-in-thousands by sequencing
(GT-seq) amplicon sequencing approach [63]. This technique

is highly scalable, and, in our case, we likely could have

sequenced many more markers (and/or individuals) while

maintaining a very high depth per amplicon. This method is

an alternative to the increasingly popular bulk-sequencing ap-

proaches, in which sample DNA is pooled prior to sequencing

[64]. GT-seq avoids some of the complexity of these ap-

proaches. For one, because it is a PCR-based method, GT-seq

does not require performing extraction, quantification, and

manual normalization of sample DNA. This is a non-trivial

consideration when individual sample sizes are in the thou-

sands. Further, unlike bulk sequencing, amplicon sequencing

provides individual-level genotypes. As such, the occurrence

of double, triple, etc. crossovers can be directly resolved, and

problematic individuals can be identified and removed during

analyses. To our knowledge, these are both not currently

possible with bulk sequencing (unless barcodes are employed,
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limiting the total number of individuals in the pool). The main

drawbacks of amplicon sequencing are a decrease in resolu-

tion (number of markers) and the need to pre-identify mapping

informative markers. That said, we believe GT-seq and ampli-

con sequencing more generally will be a useful tool for future

studies of variation in recombination rate and can be readily

paired with other approaches depending on the goals of the

study.

Conclusions
Recombination rate plays an important modulatory role in many

evolutionary processes, but little is known about how recombi-

nation rate itself evolves. Here, we studied natural variation in

recombination rate within and between two populations of

Drosophila pseudoobscura. We found extensive genetic varia-

tion for recombination rate within and between populations,

with the majority of variation detected manifesting as differences

in overall genome-wide recombination rate. This suggests that

the differences in recombination we detected between lines

may be the result of genetic variation in trans-acting global

regulators of recombination, an idea supported by a significant

association between nonsynonymous variation in meiosis-asso-

ciated genes and recombination rate.We also found no evidence

that among-line differences in local recombination rate at the 300

kb scale were correlated with structural variation within the lines.

Finally, we discovered that the magnitude of phenotypic differ-

ence in recombination rate between the two populations was

far greater than expected under amodel of neutral trait evolution,

suggesting that the differences may have been driven by natural

selection. Our study provides key insights in the quantitative ge-

netics of recombination rate and lays the groundwork for future

research focused on studying the recombination rate in natural

populations.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Biological Samples

Flagstaff14 This study N/A

MV2-25 Dr. Steven Schaeffer N/A

American Fork Canyon Inbred Lines This study N/A

Madera Canyon Inbred Lines This study N/A

Chemicals, Peptides, and Recombinant Proteins

QIAGEN Plus Multiplex PCR Master Mix QIAGEN Cat # 206145

Charm Biotech Just-A-Plate 96 PCR

Purification and Normalization Kit

Charm Biotech Cat # JN-120-10

AmpureXP beads Beckman Coulter Cat # A63881

Deposited Data

PacBio Sequel Whole Genome Sequencing This paper SRA PRJNA610090

Illumina HiSeq Whole Genome Sequencing This paper SRA PRJNA610029

Illumina HiSeq ddRAD-seq Sequencing This paper SRA PRJNA610904

Illumina NovaSeq Amplicon Libraries

(High Output)

This paper Dryad Accession https://doi.org/10.5061/

dryad.jsxksn062

Illumina NovaSeq Amplicon Libraries

(Mid Output)

This paper Dryad Accession https://doi.org/10.5061/

dryad.jsxksn062

Analysis scripts This paper https://github.com/ksamuk/

samuk_et_al_curr_biol_2020

Oligonucleotides

GT-Seq Primers - See Table S4 This paper N/A

Illumina Small RNA sequencing primer

(CGACAGGTTCAGAGTTCT

ACAGTCCGACGATC)

Illumina N/A

Software and Algorithms

samtools [65] http://www.htslib.org/

Bwa2 [66] https://github.com/lh3/bwa

GATK [67] https://gatk.broadinstitute.org/hc/en-us

R for Statistical Programming [68] https://www.r-project.org/

RStudio [69] https://rstudio.com/

tidyverse (R Package collection) [70] https://www.tidyverse.org/

lme4 (R Package) [71] https://cran.r-project.org/web/packages/

lme4/index.html

r/qtl (R Package) [72] https://rqtl.org/

ASmap (R Package) [73] https://cran.r-project.org/web/packages/

ASMap/index.html

vcfR [74] https://cran.r-project.org/web/packages/

vcfR/index.html

patchwork [75] https://cran.r-project.org/web/packages/

patchwork/index.html

SNPRelate [76] https://github.com/zhengxwen/SNPRelate

lmerTest [77] https://cran.r-project.org/web/packages/

lmerTest/index.html

car (R Package) [78] https://cran.r-project.org/web/packages/

car/index.html
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LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources and protocols should be directed to and will be fulfilled by the Lead Contact, Dr.

Kieran Samuk (ksamuk@gmail.com). This study did not generate new unique reagents.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

We collected wild male and female Drosophila pseudoobscura from Madera Canyon, AZ, USA (31�42048.9’’N, 110�52022.4’’W) and

American Fork Canyon, UT, USA (40�26’38.9’’N, 111�42008.5’’W) in May and July of 2015 respectively using bucket traps [79]. These

populations were chosen because they were known to share similar karyotypic configurations (e.g., inversions) but also differ in their

ecological context (i.e., xeric versus sub-alpine). We returned live individuals to the laboratory, isolated females, and created inbred

lines from their offspring (one line per surviving female). These lines were created by successive crosses between virgin siblings for a

minimum of 14 generations. The inbred lines (and all subsequent lines) were reared in 20C incubators with 65% relative humidity and

photoperiods of 14D:10N. The inbreeding process resulted in a total of 7 inbred lines from Arizona and 12 from Utah.

METHOD DETAILS

RAD-seq libraries from wild samples
To generate a set of SNPs for estimating FST between the Utah and Arizona populations, we performed double-digest RAD-seq reduced

representation sequencing. To begin, we extracted DNA from single wild-caught individuals (excluding the females used to initiate the

inbred lines) via phenol-chloroform DNA extraction. We then performed a RAD-seq library preparation protocol after [80]. The resulting li-

brarieswere sequenced in a single lane on an IlluminaHiSeq 4000 at theDukeCenter for Genomic andComputational Biology sequencing

facility.

Whole genome sequencing of inbred lines
We performed both short read and long read whole genome sequencing on all 17 inbred lines, as well as our testers line (MV2-25 and

Flagstaff-14). The short read libraries were prepared by first performing phenol-chloroform DNA extractions from pools of 20-30

individual female flies. We quantified DNA purity and concentration via Nanodrop (Thermofisher) and Qubit (QIAGEN). The DNA sam-

ples were then submitted for library preparation and sequencing via Illumina NovaSeq (300-400bp insert, 150bp paired end reads) at

the Duke Center for Genomic and Computational Biology sequencing facility.

The long-read libraries were prepared by first performing high-molecular weight DNA extractions from pools of 20-30 female flies

using QIAGEN Midi/Mini Prep DNA extraction kits (QIAGEN). These were then assessed for fragment size via standard gel electro-

phoresis and submitted for sequencing on a PacBio Sequel (4 SMRT cells, 4-5 samples multiplexed per cell) at the Duke Center for

Genomic and Computational Biology sequencing facility.

Whole genome variant calling: short read WGS and RAD-seq data
We identified variants in the short read data (both isoline whole genome sequencing and wild population RAD-seq) using an analysis

pipeline based on the GATK best practices [81, 82]. The complete code for this pipeline is available as a Github repository at http://

github.com/ksamuk/samuk_et_al_curr_biol_2020. All tools were run with default settings unless otherwise indicated. Briefly, we

aligned the reads for each sample to the D. pseudoobscura reference genome (version 3.04 from FlyBase, ftp://ftp.flybase.net/

genomes/Drosophila_pseudoobscura/) using bwa mem version 0.7.17 [83]. We marked adapters and duplicates using PicardTools

[84], and performed individual-level genotyping for each set of marked reads using the HaplotypeCaller. We then performed joint

genotyping on the resulting set of GVCFs via GenotypeGVCFs. We filtered SNPs in the resulting VCF using the GATK Best Practices

hard filters (see scripts for details), working in R 3.4.1 [85] with the vcfR and tidyverse packages [70, 74].

Creation of mapping populations
To estimate variation in crossover rate in our inbred lines, we created backcross-like mapping populations (crossing scheme shown

in Figure 6). We crossed groups of 3-5 males from each isoline to single virgin females from theD. pseudoobscura reference genome

isoline (MV2-25, provided by Dr. Steve Schaeffer). We then allowed the F1 offspring to develop and collected virgin females from the

resulting offspring. Finally, we crossed these virgin F1 females to males from a second fixed isoline, Flagstaff-14 (a highly inbred

isoline from Flagstaff, AZ). This resulted in a backcross-like mapping population for each of the AZ and UT lines, in which all BC1

offspring had one maternal chromosome from their F1 mother and one paternal Flagstaff-14 chromosome with a fixed, known ge-

notype (Figure 6A). This design allows for straightforward mapping of recombination events that occurred in F1 females. As such,

our estimates are unable to detect any variation in recombination due to recessive-acting effects andmay underestimate total recom-

bination rates (e.g., from modifiers that act in an additive fashion) in the pure inbred lines. Critically, this potential underestimation is

identical across all F1 families, and thus cannot (in and of itself) generate systematic differences in recombination rate between lines

or populations.
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Genotyping of mapping populations
Because our goal was to quantify the number of crossovers per generation rather than their precise location, we performed low den-

sity, genome-wide SNP genotyping using an amplicon sequencing approach. To do this, we adapted the ‘GT-seq’method outlined in

[63]. A summary of the design and performance of thismethod is depicted in Figure S1. To begin, we identified SNPs genotyped in the

whole genome dataset that were unique to the MV2-25 isoline (i.e., fixed for one allele in all 19 inbred lines and Flagstaff-14 and fixed

for another allele in MV2-25). Genotyping these markers in BC1 individuals allows the recovery of genotypic phase simply by exam-

ining the genotype of the marker SNPs – regions with UT or AZ ancestry are represented as runs of heterozygous SNPs and regions

with MV2-25 ancestry are represented as runs of homozygous SNPs (see diagram in Figure 6B). In total, we selected 500 of these

SNPs evenly spaced at approximately 300kb intervals along each chromosome (Figures S1A and S1B). Note that this choice of

marker density is optimized to detect small differences in genome wide recombination rate and cannot completely resolve fine scale

(i.e., < 300kb) variation in the recombination landscape.

We designed primer pairs to generate �200-300bp amplicons containing each of our target SNPs. These primer pairs were

optimized to minimize primer-primer interactions during multiplex PCR (primer design service provided by GT-Seek, Idaho,

USA). With these primers in hand, we performed two test library preps using the GT-seq protocol described in Campbell

et al. (2015). We sequenced the first test library on a MiSeq (V3 flow cell, Illumina, California, USA), and identified poorly perform-

ing amplicons using the criteria outlined in Campbell et al. (2015), i.e., high dropout, low representation among individuals, ev-

idence of amplicons mapping to duplicate regions, etc. (service provided by GT-Seek LTD, Idaho, USA). We then prepared a

second test library with the primers for the poor-performing amplicons omitted and sequenced it as above. A final screen for

poor-performing amplicons resulted in a final set of 390 amplicons ranging from 200-300bp, each containing at least one recom-

bination-informative SNP.

After optimizing our panel of amplicons, we used GT-seq to genotype approximately 400 BC1 offspring from each mapping

population (400 individuals from each of 19 lines, a total of approximately 7600 individuals). We created two pools of 40 plates

(individuals and plates are individually barcoded as part of GT-seq library preparation) and submitted these for sequencing on an

Illumina NextSeq 500 (1st pool: High Output Reagent 150 PE Reagent Kit, 2nd Pool: Mid Output 150 PE Kit, Illumina, California) at

the Duke Center for Genomic and Computational Biology sequencing facility. We called SNPs in our sequenced GT-seq amplicons

using an identical approach to our whole genome short read data. The final dataset contained 679 total variants across all amplicons,

sequenced to an average depth of �200X (Figure S1C). While there was some variability in sequencing depth between amplicons

(mean coefficient of variation for depth of amplicon sequence was �0.75), the overall high depth of sequencing resulted in the

vast majority of amplicons having > 100X coverage (Figure S1C). We performed further quality control on the resulting SNPs in R us-

ing the vcfR and tidyverse packages [70, 74]. First, we dropped any markers that mapped to genomic locations outside our original

targeted amplicons. Next, we dropped any individuals that had an average depth below 10X (19/7600 individuals). Finally, we

removed any markers that displayed any evidence that they were in fact not unique to the tester line. This was done by removing

markers displaying: (1) any evidence of segregation distortion, (2) any evidence that any of the isolines were in fact polymorphic

for the marker or (3) high dropout (i.e., represented in fewer than 75% of samples). In some cases, the source of marker dropout

was clearly an undetected INDEL polymorphism in the amplified regions, which, for consistency among lines, we erred on the

side of removing rather than recoding as them asmarkers for mapping. The final set contained 344 mapping-informative SNPs. After

filtering, we recoded all SNP genotypes as ‘0’ for the isoline/donor line state and ‘1’ for the tester line state. Because of the backcross

design, the only possible genotypes were thus ‘0/0’ and ‘0/1’.

Detection of recombination events
We identified crossovers in two steps: (1) ancestry assignment of chromosome segments and (2) crossover counting. To begin, we

updated the genomic ordering of ourmarkers using the genomic scaffold ordering from [86]. Note that this reordering results inmove-

ment and replacement of contigs between chromosomes, and as such overall physical lengths of the reordered chromosomes are

different from that of themost currentD. pseudoobscura reference (version 3.04). After markers had been reordered, we assigned the

ancestry (isoline or tester) of chromosomal segments by identifying runs of 0/0 s and 0/1 s. In regions with a single ancestry assign-

ment, we imputed (via parsimony) across gaps of missing markers (e.g., due to filtration or dropout) shorter than 2markers (�400kb).

After local ancestry was assigned, we counted crossovers by counting the number of ancestry changes (from 0/0 to 0/1) along each

chromosome in each individual using the function countXO in R/qtl [52]. Following the recommendations in [87], we ignored double

crossovers spanning less than 2markers (�400kb) and/or individuals displaying more than four crossovers on a single chromosome:

crossover interference should make close range double crossovers exceedingly rare, and thus these cases likely represent genotyp-

ing or marker-order errors. It is also worth noting that our method of crossover detecting relies on quantifying crossover events in

live-born offspring. As such, any extreme changes in crossover patterns incompatible with proper chromosome segregation during

meiosis will not be observed (i.e., because they are lethal or lead to gamete degradation).

This crossover counting method assumes that the order of markers on each chromosome is identical in each line. Differences in

marker order could, for example, generate spurious double crossovers (although ignoring short double crossovers reduces this prob-

lem). To directly address the possibility of different marker orders among lines, we created separate genetic maps for each isoline

using the R packages r/QTL and ASMap [73, 87]. Following the general recommendations from the documentation, these two
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packages agnostically infer linkage group assignment, marker order, and genetic distances betweenmarkers. Overall, therewas high

concordance in marker order between all the individually-inferred maps (Figure S2). Individual recombination rate estimates within

each line were highly similar when using the reference genome marker order or individually-inferred marker orders (Figure S2,

Spearman rank correlation = 0.93, p < 2.2 3 10�16). We thus elected to use the reference genome marker order (reordered based

on [86]) for all subsequent analyses. Individual estimates of crossover events are provided in Tables S1 and S2.

Candidate genes associated with recombination differences
We explored the possibility that between-line variation in meiosis-related candidate genes may underlie between-line differences in

recombination rate. We were specifically interested in the hypothesis that coding changes in meiosis genes underlie any differences

in recombination rate between inbred lines (and act dominantly or additively in the F1s). To do this, we first assembled a list of candi-

date genes fromAnderson et al., 2009 andHunter et al., 2016 [29, 88] (full list in Table S3).We then obtained the FASTA sequences for

these genes in each line by intersecting the short read variant calls (including INDELs) with the D. pseudoobscura reference genome

CDS for each candidate gene. To ensure proper alignment, we then performedmultiple alignment of the line-level FASTA sequences

and the reference CDS using MAFFT version 7.407 [89]. Once the sequences had been aligned, we identified non-synonymous,

non-reference alleles in each line.

Association between local structural variation and recombination rate
Along with the candidate gene approach to examine associations with genome-wide recombination rate, we also investigated the

possibility that small-scale differences in genomic structure between the inbred lines may explain differences in recombination

rate. This may be of particular importance given that our design required measuring recombination rate in F1 individuals (inbred

line 3 tester line), and that structural heterozygosity has a well-known negative association with recombination rate [37, 60, 90].

To test if differences ingenomestructureunderlie local differences in recombination rate inour inbred lines,wefirst identifiedstructural

variants (SVs) using two approaches. First, we used the SVtools pipeline [91] to identify SVs using paired-end short read data.

This pipeline identifies structural variation using a variety of genomic signatures, particularly split reads (different parts of a single

read mapping to multiple discrete locations) and discordant reads (paired end reads separated by a much greater genomic distance

than expected on the basis of their insert size). SVtools can identify insertions, deletions, inversions, duplications, and other classes

of rearrangements. The general procedure is to identify split/discordant reads using the tools SAMBAMBA and SAMBLASTER, which

are thenanalyzedandannotatedwith theSVtools variant callers [92, 93].The resulting structural variantVCFwasfilteredviaempirical cut

offs using the guidelines in [91]. Along with SVtools, we separately identified structural variation in the PacBio long reads dataset using

the PacBio structural variant pipeline and tools, pbsv (https://github.com/PacificBiosciences/pbsv, see also [94]). This involves aligning

the long readswithminimap2 (accessedvia thepbmm2wrapper), identifying individual signaturesof structural variation usingpbsv, and

jointly calling structural variation from the combinedsetof signatures. This again results in aVCFcontaining structural variants,whichwe

filtered using empirical cutoffs as before.

After identifying structural variants, we next quantified the total difference in sequence homology between each line and the tester

line (MV2-25) for each genomic interval where recombination was measured (�300kb windows). To do this, we summed the total

number of non-shared, non-reference base pairs between each line and the tester line. We included SNPs, inversions, insertions,

deletions, and translocations in this calculation. This method collapses multiple classes of genomic variation into a single, consistent

metric and avoids the ambiguity associated with identifying shared locations of breakpoints for the structural variants (e.g., needed

for per-variant associations). Further, this method focuses on themost likely biological cause of structurally-mediated recombination

suppression, i.e., differences in homology per se, which has been widely demonstrated in many species [95–97]. We also tabulated

the total count of structural variant alleles (of any type) that differed between each isoline and the tester line for each recombination

interval. We normalized all homology estimates and structural variant counts in each window using both the total number of geno-

typed base pairs in each window as well as the mean depth per isoline.

QUANTIFICATION AND STATISTICAL ANALYSIS

Population differences in recombination rate
We quantified differences in recombination rate between populations using a generalized linear mixed model fitted with the R pack-

age lme4 [98]. This model had the form crossover count �population + (1|inbred line), with a Poisson error distribution and a log link

function (in order to accommodate the non-normal nature of crossover counts). We checked for violations of model fit for this and all

subsequent models using a QQ-plot and a fitted versus Pearson residuals plot (see Figure S3 for an example). To test the fixed effect

of population, we performed a Type II Wald Test using the function ‘‘Anova’’ from the car package [78], as well as a Likelihood Ratio

Test comparing models with and without the population term. Note that these two tests focus on a slightly different hypothesis (i.e.,

that the populations are significantly different in recombination rate, on the basis of phenotypic variance alone) than the

QST -FST analysis below.
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QST-FST Analysis
To test the hypothesis that population-level differences in recombination rates are driven by natural selection, we performed

a QST-FST analysis [33, 35, 99]. We began by computing a point estimate of QST for genome-wide recombination rate using lm4

by fitting a linear mixed effects model with the following form: crossover count = intercept + (1|inbred line) + (1|population). We ex-

tracted the variance components for population and inbred line (nested in population) using the R function varcomp(). Following [55]

we computed QSTusing the following formula:

QST =
s2
BG

s2
BG + s2

WG

; (Equation 1)

where s2BG denotes the between-group (population) variance and s2WG denotes within-group (inbred line nested in population) variance.

Note that thewithin-groupvariance term in thedenominator isnotmultipliedby two in thecaseofhaploidsorcompletely inbred lines [99].

We computed FST using SNPs genotyped via RAD-seq in wild AZ and UT individuals. To do this, we converted the GATK VCF to a

SNP table using vcfR and the tidyverse package in R (see analysis scripts). We then converted the resulting SNP table for manipu-

lation in the R package SNPRelate [100]. Using SNPRelate, we first performed LD pruning (default settings, r < 0.2) to reduce

statistical non-independence between SNPs [101]. This resulted in a dataset composed of 16 individuals for AZ and 42 for UT,

with a total of 6 591 high quality SNPs. We then computed per-SNP estimates of Weir and Cockerham’s FST using SNPRelate,

requiring filtered sites to have a minimum minor allele frequency of 0.1.

We assessed the statistical departure from neutrality for each value ofQST using the Null-QST method outlined in [35] and [55] with

a modification to accommodate trait data from inbred lines. The general approach outlined in these two references is to simulate the

expected distribution of for a neutral trait (denotedQn
ST , neutral QST) via a parametric bootstrap, and use this distribution as the basis

of a statistical test of the hypothesis QST > Qn
ST .

To simulate the distribution of Qn
STwe first estimated the between-group (s2BG) and within-group (s2WG) variance components. We

obtained these values via REML estimation by fitting mixed-effects linear models using the function lmer in the R package lme4 [98].

These models took the form crossover count�intercept + (1|population) + (1|line). We extracted the variance components (standard

deviations of the random effects) using the function VarComp from lme4.

We next generated 10 000 (nonparametric) bootstrap estimates of themean value ofWeir and Cockerham’s FST by resampling the

RADseq SNPs with replacement, and computing genome-wide mean FST using SNPRelate. We then generated 10 000 matching

parametric bootstrap estimates of the s2WG by multiplying the REML point estimate by a random draw from a c2 distribution with de-

grees of freedom equal to the number of inbred families (df = 17). Next, we generated parametric bootstrap estimates of the expected

values of s2BG for a neutrally evolving trait using the equation:

boot
�
s2
BG

�
=

bootðFST Þboot�s2
WG

�

1� bootðFST Þ 3 c2ðn = 1; df = 1Þ; (Equation 2)

with Equation 2 above being modified from [35] to accommodate complete inbreeding. In Equation 2, ‘‘boot’’ indicates individual

bootstrap samples for each quantity, and the c2 term represents a draw from a c2distribution with degrees of freedom equal to

the number of populations minus one (one, in this case). This procedure results in 10 000 bootstrap samples for s2BG and s2WG,

from which we computed 10 000 bootstrap samples of Qn
STusing Equation 1. We finally computed a p value for the observed value

of QST by determining the number of Qn
STvalues that exceeded the observed value of QST distribution. We also computed a confi-

dence interval for QST � FST (the difference between QST and FST , expected to be zero under the neutral model) by subtracting

each value the Qn
ST � FST distribution from the observed value of QST � FST (after [55]). Note that while we computed the distribution

of FST from the independently-sourced RAD-seq data, the distribution of FST was nearly identical when computed using SNPs

derived from the short read whole genome sequencing of the inbred lines themselves.

Candidate genes associated with recombination differences
Using the candidate gene data from the inbred lines, we tested for associations between inbred line recombination estimates and

genotype at each site where at least one non-synonymous change occurred in each gene. To this end, we fit linear models with

recombination rate as the response and genotype (at all variable non-synonymous sites) as the predictor. This yielded a p value

for each genotype versus recombination comparison. In order to control for the possibility of false positives, which we adjusted

via the FDR approach [102], with FDR < 0.05 adjustments performed using the function p.adjust in R. A main caveat to this approach

is that the small number of lines and large number of variable sites limits our power and ability to include controls for genetic back-

ground, genotype at ‘‘non-meiosis’’ genes, etc. As such, we consider the function of this analysis to bemainly hypothesis-generating

and to serve as a bridge between our results in previous molecular work.

Association between local structural variation and recombination rate
We tested the association between normalized sequence homology and recombination rate via a hierarchical linear model fit using

the function glmer from the R package lme4 [98]. This model had the form: recombination rate �method * homology + (1|window

identity) + (1|inbred line), with Poisson-distributed errors and a log link function. Assigning window identity (i.e., genomic region in

which recombination and homology were measured) as a random effect controls for mean local variation in recombination rate
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(i.e., normalizes the absolute recombination rates among windows). Similarly, modeling inbred line identity as a random effect con-

trols for genome-wide differences in recombination rate, which are unrelated to local variation. We assessed the significance of the

homology term in the model by comparing the full model to a model with only random effects via a likelihood ratio test in R. We finally

repeated this model fitting procedure with the normalized count of differences in structural variant alleles as the predictor.

DATA AND CODE AVAILABILITY

All analysis code employed throughout the paper is available as a Git repository at: https://github.com/ksamuk/

samuk_et_al_curr_biol_2020. GT-seq amplicon data are available on Dryad https://doi.org/10.5061/dryad.jsxksn062. The accession

number for the ddRAD data derived fromwild populations is SRA: PRJNA610904. The accession number for the whole genome short

read (HiSeq 4000) sequencing of the isolines is SRA: PRJNA610029.The accession number for the whole genome long read (PacBio

Sequel) sequencing of the isolines is SRA: PRJNA610090.
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